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Abstract

We present detailed comparisons between high-resolution Monte Carlo simulation (MCS) and low-order numerical

solutions of stochastic moment equations (SMEs) for the first and second statistical moments of pressure. The objective

is to quantify the difference between the predictions obtained from MCS and SME. Natural formations with high

permeability variability and large spatial correlation scales are of special interest for underground resources (e.g. oil and

water). Consequently, we focus on such formations. We investigated fields with variance of log-permeability, r2
Y , from

0.1 to 3.0 and correlation scales (normalized by domain length) of 0.05 to 0.5. In order to avoid issues related to

statistical convergence and resolution level, we used 9000 highly resolved realizations of permeability for MCS. We

derive exact discrete forms of the statistical moment equations. Formulations based on equations written explicitly in

terms of permeability (K-based) and log-transformed permeability (Y -based) are considered. The discrete forms are

applicable to systems of arbitrary variance and correlation scales. However, equations governing a particular statistical

moment depend on higher moments. Thus, while the moment equations are exact, they are not closed. In particular, the

discrete form of the second moment of pressure includes two triplet terms that involve log-permeability (or perme-

ability) and pressure. We combined MCS computations with full discrete SME equations to quantify the importance of

the various terms that make up the moment equations. We show that second-moment solutions obtained using a low-

order Y -based SME formulation are significantly better than those from K-based formulations, especially when r2
Y > 1.

As a result, Y -based formulations are preferred. The two triplet terms are complex functions of the variance level and

correlation length. The importance (contribution) of these triplet terms increases dramatically as r2
Y increases above

one. We also show that one of the triplet terms is much more important than the other. When comparing K-based MCS

with Y -based SME, model differences must be taken into consideration. These differences (model errors) are due to

embedded assumptions and differences in implementing the discrete forms of the equations.
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1. Introduction

Predictions of flow and transport in natural porous media are used to manage valuable subsurface re-

sources including water aquifers and oil reservoirs. The predictions are usually made, however, in the

presence of a great deal of uncertainty due to (1) sparsity of available data and (2) the observed complex

spatial variability and correlation structures of formation properties, such as permeability. A probabilistic,

or stochastic, framework is employed to deal with the uncertainty brought about by incomplete knowledge

of the reservoir properties. Stochastic models of reservoir description, which honor available data, are
common practice. However, deterministic mathematical formulations that describe the flow and transport

continue to serve as the basis for reservoir flow simulators. Monte Carlo simulation (MCS) is the primary

tool used in the oil industry to quantify the uncertainty in the flow response due to uncertainty in the

reservoir description. In MCS, the statistical moments are computed from the results of multiple flow

simulations, one per equiprobable realization of the reservoir description.

Subsurface hydrologists, on the other hand, have developed stochastic moment methods that incorpo-

rate the probabilistic nature of the formation properties, permeability for example, into the governing

equations of flow and transport in heterogeneous aquifers. These stochastic moment equation (SME)
methods offer an elegant and direct approach for not only making predictions of flow and transport in

porous formations but also quantifying the uncertainty associated with such predictions. Formally, the

validity range of these perturbation-based low-order stochastic moment equation (LOSME) methods is

limited to small values of the expansion parameter, usually the standard deviation of log-permeability, rlnK ,

and small correlation scales [7,9,16,30]. Notwithstanding these restrictions, the broad class of LOSME

approaches represents a school of thought that is widely recognized and used. Examples include

[6,8,9,11,15–18,23,26,30], among others.

Surveys of natural formations indicate that the level of variability and spatial correlation scales of
permeability span a wide range [9,10,14,16,22]. It is clear from these surveys and others that high levels of

permeability variability (i.e. r2
lnK > 1) are common in practice. Moreover, large correlation scales exist in

many aquifer and reservoir systems. Thus, from a practical view, it is important to be able to predict the

behavior of natural formations that exhibit high variability and long correlation scales.

Higher-order terms are dropped in the process of deriving first- and second-order SME approximations.

As the variance and correlation scale of permeability increase, one expects the high-order terms to play a

more significant role. For example, Hassan et al. [21] found that triplet terms in the moment equations of

transport can have a significant impact on the computed response even in the case where the mean flow is
uniform and r2

lnK is close to unity. On the other hand, Guadagnini and Neuman [19,20] found that nu-

merical solutions of the first and second moments of pressure obtained by first-order (in r2
lnK) approxi-

mations show remarkable agreement with MCS even for strongly heterogeneous formations. In their study,

they considered systems with r2
lnK as large as four and very long correlation scales of the permeability.

Zhang and Winter [31] found similar agreement between low-order approximations and MCS results.

The central question we tackle here is how well do these LOSME methods predict the flow behavior in

the parameter space of practical interest. In particular, we study the statistical moments of pressure for

incompressible flow in two dimensions. Similar treatment for the transport problem in strongly hetero-
geneous formations will be addressed later. Our approach is based on comparison of SME solutions with

high-resolution MCS. A large set of high-resolution MCS was constructed. The Monte Carlo results serve

both as reference and a repository of data that can be used to analyze the complex character of the obtained

responses. We use two different forms of the flow equation as a starting point. One form is based on the

permeability, K, the other is based on log-transformed permeability, Y ¼ lnK. For each form, we derive the

exact discrete equations of the pressure moments, which are valid for arbitrary variability levels and cor-

relation scales. The motivation for analyzing two different equation forms is discussed later. With the help

of MCS, all the terms that appear in the exact discrete moment equations, including the terms that are
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dropped in LOSME formulations, can be reconstructed. We map out the behavior of the statistical mo-

ments of pressure for a wide range of the parameter space. We consider systems with a variance of log-

permeability, r2
Y , from 0.5 to 3.0 and correlation length (normalized by domain length) from 0.05 to 0.5. We

also present detailed analysis of the character and magnitude of the errors that contribute to the dis-

crepancy between LOSME solutions and MCS results. We find that the discrepancy is mainly due to the

truncation of high-order terms in the process of developing low-order, perturbation-based statistical mo-

ment approximations. For our problem, the important missing terms are two triplets that are complex

functions of mixed third moments involving pressure and permeability. We also find that details of the
numerical schemes employed can have a significant impact on the computations.

The paper is organized as follows. First, we develop full discrete forms of the equations governing the

first two moments of pressure. These equations are valid for arbitrary variance and correlation scales. Next,

we map out the detailed behavior of the statistical moments of flow-related quantities using high-resolution

MCS. The focus here is on the second moment of the dependent variable, pressure. Second moments

provide a measure of predictive reliability, which is a key motivation for resorting to SME methods. We

then compare SME with MCS to quantify the range of applicability of SME approaches for the flow

problem under investigation. By combining the full discrete form of the moment equations with results
from MCS, we isolate and systematically quantify the impact of high-order terms that are usually dropped

in the process of developing low-order, perturbation-based, SME approaches.

2. Governing equations

We consider the case of incompressible flow in a heterogeneous porous medium. From the continuity

equation and Darcy�s law, we write the equation governing the pressure distribution in the domain as

o

ox
Kðx; yÞ oP ðx; yÞ

ox

� �
þ o

oy
Kðx; yÞ oP ðx; yÞ

oy

� �
¼ 0; ð1Þ

where Kðx; yÞ denotes the spatially variable permeability field and Pðx; yÞ is pressure. The permeability is

assumed to be a random space function, and by Eq. (1) so is the pressure. Expanding the derivatives of
Eq. (1) and defining Y ðx; yÞ ¼ lnKðx; yÞ, we obtain a pressure equation in terms of log-permeability

o2P ðx; yÞ
ox2

þ o2P ðx; yÞ
oy2

þ oY ðx; yÞ
ox

oP ðx; yÞ
ox

þ oY ðx; yÞ
oy

oP ðx; yÞ
oy

¼ 0: ð2Þ

We refer to Eqs. (1) and (2) as the K-based and Y -based equations for pressure. We may use either equation
to perform MCS or derive SMEs. Traditionally, Eq. (2) is used to develop moment equations and Eq. (1) is

employed in Monte Carlo simulation [3,4,20,21,32].

We use MCS to study the statistical moments of pressure when permeability variability is the source of

uncertainty. In MCS, the statistical moments are obtained using an ensemble of solutions, each of which is

obtained from a single highly resolved realization of the permeability distribution. Using a random field

generator, such as GSLIB [12] and HydroGen [5], realizations of the permeability field are generated such

that they share a common correlation structure and variability level. The appropriate level of resolution for

the generated realizations is an important question. In general terms, the discretization requirements are
dictated by the characteristics of the permeability field as well as the flow process under study [1,21]. In fact,

the resolution requirements depend on the particular variable (e.g., pressure, velocity, production rate)

under study as well as the order of the statistical moment of interest [27]. We confine the discussion here to

the simple setting of uniform mean flow
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oP ðx; yÞ
oy

¼ 0; y ¼ 0; L; P ð0; yÞ ¼ P0; PðL; yÞ ¼ P1; ð3Þ

where L is domain length, and P0 and P1 are the fixed inlet and outlet pressures. This simple setting allows us

to compare our findings with previous work. We also performed an extensive study of settings where the

mean flow is non-uniform due to the presence of wells and no-flow boundaries. That analysis is deferred to

a subsequent paper. Here, we note that while the behaviors are more complex when the mean flow is non-

uniform, the fundamental mechanisms at work are the same as those in the mean uniform flow case.

3. Numerical implementation

3.1. K-Based pressure equation

To solve Eq. (1) numerically, we employ a point-distributed grid. The domain is discretized using Ni and

Nj nodes in the respective x and y directions x ¼ xðiÞ and y ¼ yðjÞ, where i and j are ½1; 2; 3; . . . ;Ni� and
½1; 2; 3; . . . ;Nj�. The total number of nodes is M ¼ Ni � Nj.

Using a central finite-difference approximation on uniformly spaced grid, we have

o

ox
K
oP
ox

� �
i;j

¼ 1

Dx2
Kiþ1

2
;jðPiþ1;j

h
� Pi;jÞ � Ki�1

2
;j Pi;j
�

� Pi�1;j

�i
;

o

oy
K
oP
oy

� �
i;j

¼ 1

Dy2
Ki;jþ1

2
ðPi;jþ1

h
� Pi;jÞ � Ki;j�1

2
ðPi;j � Pi;j�1Þ

i
;

ð4Þ

where Kiþ1
2
;j, Ki;jþ1

2
, Ki�1

2
;j, and Ki;j�1

2
are interface permeabilities between nodes i and iþ 1, j and jþ 1, i and

i� 1, and j and j� 1, respectively. Fig. 1 shows the locations of the variables on the grid. From a control-

volume discretization perspective, the gridblock permeability is defined at the cell center. The interface

value, Kiþ1
2
;j for example, is taken as the harmonic average of the two permeability values defined at the cell

centers, or control volumes, i and iþ 1. The harmonic average preserves continuity of pressure and flux at
the interface [2]. Preserving flux continuity is necessary for local conservation and can have important

implications when the gridblocks (control volumes) are large and/or the discrete representation of per-

meability is highly discontinuous. For interior nodes, or gridblocks, Eq. (1) can be expressed as

Kiþ1
2
;jPiþ1;j þ Ki�1

2
;jPi�1;j þ Ki;jþ1

2
Pi;jþ1 þ Ki;j�1

2
Pi;j�1 � ðKiþ1

2
;j þ Ki�1

2
;j þ Ki;jþ1

2
þ Ki;j�1

2
ÞPi;j ¼ 0: ð5Þ

Fig. 1. The computational and permeability grids in the domain.

L. Li et al. / Journal of Computational Physics 188 (2003) 296–317 299



Application of reflection at the no-flow boundary, y ¼ 0 for example, yields

Kiþ1
2
;jPiþ1;j þ Ki�1

2
;jPi�1;j þ 2Ki;jþ1

2
Pi;jþ1 � Kiþ1

2
;j

	
þ Ki�1

2
;j þ 2Ki;jþ1

2



Pi;j ¼ 0: ð6Þ

We can write similar equations for the other no-flow boundaries. Using matrix notation, we write

KP ¼ 0: ð7Þ

Eq. (7) is the discrete representation of Eq. (1). It is usually referred to as the pressure equation in

reservoir engineering, and the space-state equation in hydrology [13]. For our structured two-dimensional

grid, K is a bandedM �M permeability (transmissibility) matrix and P is the pressure vector ofM elements.

The boundary conditions are usually absorbed into the coefficient matrix; internal sources and sinks may

appear as source terms on the right-hand side of Eq. (7).

3.2. K-Based Monte Carlo simulation

The steps for MCS are: (1) generate a large number of permeability realizations, (2) solve Eq. (7) for each

realization, and (3) perform statistical post-processing of the quantities of interest. Here, we assume that
permeability is lognormally distributed and is second-order stationary in space, such that the mean log

permeability is constant and its covariance depends on the relative distance of two points rather than their

actual locations. These assumptions are made here for convenience; our computational tools accommodate

non-stationary correlation structures and complex domain geometry. The permeability fields were gener-

ated using the HydroGen [5] and SGSIM of GSLIB [12] software packages. The range of parameters in-

vestigated in this study spans a variance of log-permeability, r2
lnK , from 0.1 to 3 and integral scales

(normalized by domain size) from 0.05 to 0.5. Table 1 lists the details of the cases studied here.

With MCS, an important question is statistical convergence of the computed moments. That is, how
many realizations are necessary. We tested the statistical convergence of the moments not only of per-

meability but also of the dependent variable, pressure. Fig. 2 shows the convergence behavior of the sample

Table 1

Input parameters for different MC simulation cases

Parameter Case 1 Case 2 Case 3 Case 4 Case 5

r2
Y 0.1 0.1 0.1 0.1

kY
L

0:25
5:

¼ 0:05 0:5
5:
¼ 0:1 1:

5:
¼ 0:2 2:

5:
¼ 0:4 2:5

5:
¼ 0:5

kY
Dx

0:25
:125

¼ 2 0:5
0:125

¼ 4 1:0
:125

¼ 8 2:0
:125

¼ 16 2:5
:125

¼ 20

r2
Y 0.25 0.25 0.25 0.25 0.25

kY
L

0:25
5:

¼ 0:05 0:5
5:
¼ 0:1 1:

5:
¼ 0:2 2:

5:
¼ 0:4 2:5

5:
¼ 0:5

kY
Dx

0:25
:125

¼ 2 0:5
0:125

¼ 4 1:0
:125

¼ 8 2:0
:125

¼ 16 2:5
:125

¼ 20

r2
Y 0.5 0.5 0.5 0.5 0.25

kY
L

0:25
5:

¼ 0:05 0:5
5:
¼ 0:1 1:

5:
¼ 0:2 2:

5:
¼ 0:4 2:5

5:
¼ 0:5

kY
Dx

0:25
:125

¼ 2 0:5
0:125

¼ 4 1:0
:125

¼ 8 2:0
:125

¼ 16 2:5
:125

¼ 20

r2
Y 1 1 1 1 1

kY
L

0:25
5:

¼ 0:05 0:5
5:
¼ 0:1 1:

5:
¼ 0:2 2:

5:
¼ 0:4 2:5

5:
¼ 0:5

kY
Dx

0:25
:125

¼ 2 0:5
0:125

¼ 4 1:0
:125

¼ 8 2:0
:125

¼ 16 2:5
:125

¼ 20

r2
Y 3 3 3 3 3

kY
L

0:25
5:

¼ 0:05 0:5
5:
¼ 0:1 1:

5:
¼ 0:2 2:

5:
¼ 0:4 2:5

5:
¼ 0:5

kY
Dx

0:25
:125

¼ 2 0:5
0:125

¼ 4 1:0
:125

¼ 8 2:0
:125

¼ 16 2:5
:125

¼ 20

Note. kY is the correlation scale of Y; Y ¼ lnK, where K is the absolute permeability.
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mean (a) and variance (b) of log-permeability as a function of the number of realizations. Fig. 2 is for the

case with input r2
lnK ¼ 3 and a variety of correlation lengths. The sample mean and variance are reported

for one point in the domain. The point is selected as follows: After 9000 realizations are generated, the

sample statistics are computed and compared to the corresponding values obtained based on the first 8999
realizations; then the point with the maximum difference is marked for each quantity (mean or variance)

and the sample mean or variance at that point is computed as a function of the number of realizations. As

such, the grid point used to report the sample mean may be different from that for the variance. Fig. 2

shows that the sample statistics converge, or stabilize, after about 2000 realizations. The mean log-per-

meability converges to the input value for all cases studied. However, it is more difficult for sample vari-

ances to converge to the target input values. Fig. 2 indicates that agreement between the input and sample

variance deteriorates as the correlation length (normalized by the domain size) increases. It is well known

that input statistics are difficult to honor exactly for highly variable random fields with long correlation
scales. To avoid issues related to this problem, we computed the statistics (mean, variance and covariances)

of the generated ensemble. These statistics were then used as input for the SME simulations instead of the

theoretical values.

Fig. 3 shows an example of the convergence of sample statistical moments of pressure at one point. In

Fig. 3, r2
lnK ¼ 3 and the normalized correlation scale ranges from 0.05 to 0.5. The pressure statistics also

appear to stabilize after 2000 realizations. In general, we find that for a particular variable, permeability or

pressure, for example, a larger ensemble is generally needed to stabilize second moments compared with

first moments. We also find that the adequate size of the ensemble grows as the variance and integral scale
of permeability increase. Bellin et al. [3] used two-dimensional MCS of flow and transport in heterogeneous

systems to investigate the validity of first-order moment-based theories. They studied the convergence

behavior of the computed moments of both velocity and particle trajectory. They found that more than

1000 realizations are required to stabilize the moments of the ensemble, especially second moments, even

for relatively mild heterogeneity. Our experience with the flow problem is consistent with their findings. The

need for such large numbers of realizations to obtain reliable statistical moments, especially second mo-

ments, of pressure and other flow-related quantities is an enormous hurdle for practical use of high-res-

olution MCS. This does not appear to be widely recognized in the reservoir engineering community. This is

Fig. 2. The convergence of statistical moments of permeability with respect to the number of realizations where r2
lnK ¼ 3: (a) mean

permeability; (b) permeability variance.
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especially important these days because of the growing interest and use of Monte Carlo simulation for

providing quantitative measures of the uncertainty associated with flow predictions.

During the course of our analysis, we developed an extensive dataset of high-resolution MCS results for

flow in two-dimensional heterogeneous domains. Performing high-resolution MCS presents its own chal-

lenges; the two notable examples being (1) the appropriate resolution level and (2) size of the ensemble.
However, we will not address these issues here. Our focus is on understanding the detailed characteristics of

the statistical moments of flow-related quantities for heterogeneous domains with large permeability var-

iance and long correlation scales. Thus, while 2000 realizations appear adequate for the parameter range

under investigation, we employ 9000 realizations for all the cases presented in this paper. In this context,

MCS is a tool that helps us map out the regions of the parameter space where low-order SME approxi-

mations are adequate, and those regions where improvements are needed.

We used the exponential covariance model to describe the correlation structure of the log-permeability

field

CY ðrÞ ¼ r2
Y exp

2
4� r21

k2
1

 
þ r22

k2
2

!1=2
3
5; ð8Þ

where r is the separation vector between two points, r2
Y is the variance of log-permeability, and ki is the

correlation (integral) scale of log-permeability in the ri direction.
To obtain accurate numerical solutions, Hassan et al. [21] recommend a ratio of the integral (cor-

relation) scale to the size of computational gridblock, of four, or larger. The quality of the discrete
representation of the correlation structure is tested by comparing the statistical moments obtained from

the ensemble with the input analytical model. Fig. 4 shows the correlation function along the lines

x ¼ L=2 and y ¼ L=2 with respect to the reference point x0 ¼ L=2; y0 ¼ L=2. In order to eliminate the

impact of harmonic averaging, which is usually employed to obtain an interface value that ensures flux

continuity in the discrete form of the pressure equation, the interface permeability values are generated

directly for the purpose of performing MCS. Thus, we make sure that the statistical moments of the

Fig. 3. The convergence of statistical moments of pressure for uniform mean flow as a function of the number of realizations when

r2
lnK ¼ 3: (a) mean pressure; (b) pressure variance.
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input permeability, especially the variance, are preserved. Refer to Fig. 1 for a schematic of the

computational grid.

3.3. K-Based stochastic moment equations

In this section, we develop a discrete form of the K-based stochastic moment equations. We use Eq. (7),

which is the discrete form of Eq. (1) as the starting point. For any random variable

K ¼ hKi þ K 0; hK 0i ¼ 0;

P ¼ hP i þ P 0; hP 0i ¼ 0;
ð9Þ

where h i represents mathematical expectation, or ensemble averaging. Substituting Eq. (9) into Eq. (7) and

taking expectation gives the equation governing the mean pressure

hKihPi þ hK0P0i ¼ 0: ð10Þ

Fig. 4. A comparison of the analytical permeability correlation function, in the x and y directions, with results computed from the

ensemble of realizations. The normalized integral correlation scales are: (a) 0.1, (b) 0.2, (c) 0.4, and (d) 0.5, respectively.
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The equation for the pressure perturbations is obtained by subtracting Eq. (10) from Eq. (7)

hKiP0 þ K0hPi þ K0P0 � hK0P0i ¼ 0: ð11Þ

Multiplying Eq. (11) with P 0 and K 0 at a particular location and averaging, we obtain the following relations:

hKiCPP þ CPKhPi þ hP 0K0P0i ¼ 0;

hKiCKP þ CKKhPi þ hK 0K0P0i ¼ 0;
ð12Þ

where CKK ¼ hK 0K0i is the (input) permeability covariance matrix, CPP ¼ hP 0P0i is the pressure covariance

vector, and CKP ¼ hK 0P0i is the cross-covariance vector of permeability and pressure. We choose to work
with these discrete forms directly. Of course, a continuous differential form of these ‘‘exact’’ equations can

also be derived [19,30]. The discrete forms given by Eqs. (10) and (12) are exact on the given grid in that no

terms have been neglected. They are thus valid for any input permeability variance and correlation scale.

However, these equations are ‘‘not closed’’ because equations for the second moments depend on two third

(triplet) moments. One can certainly write similar equations for the third moments, which will turn out to

include some mixed fourth moments. In general, the equations for the nth moments generally require

knowledge of the ðnþ 1Þth moments. Theoretically speaking, an infinite hierarchy of equations needs to be

evaluated for each moment. This is the so-called closure problem [30]. The closure problem is usually
treated by approximating the nth moment in terms of lower moments. One particular approximation

commonly used in low-order stochastic analysis is to simply neglect the triplet moments when evaluating

second moments, which leads to

hKiCPP þ CPKhPi ¼ 0;

hKiCKP þ CKKhPi ¼ 0:
ð13Þ

This set of moment equations is equivalent to the first-order equations derived using the method of

Adomian decomposition on the basis of a K-based representation [28,30, Section 3.9]. Since the two triplet
moment terms can be computed from our extensive repository of MCS results, their contributions to the

second moments can be quantified. Detailed discussion of these results is presented later. Combining the full

discrete form of the SMEs with the results from MCS in this manner is a powerful method for the sys-

tematic analysis and quantification of the character, size, and relative importance of the various terms,

especially those that are usually dropped in the perturbation-based SME approach.

We note that the numerical implementations of the statistical moment equations (10) and (12) are

completely consistent with the implementation of Eq. (7), which is used to perform K-based MCS. We show

later that complete consistency in the discrete representation and solution methods is important when MCS
is used to analyze and validate low-order SME methods.

3.4. The Y -based pressure equation

We derive a discrete form of Eq. (2). Using centered differences on a point-distributed grid in two di-

mensions, we obtain

o2P
ox2

� �
i;j

¼ 1

Dx2
ðPiþ1;j � 2Pi;j þ Pi�1;jÞ;

o2P
oy2

� �
i;j

¼ 1

Dy2
ðPi;jþ1 � 2Pi;j þ Pi;j�1Þ;

ð14Þ

and we express terms involving first derivatives as
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oY
ox

oP
ox

� �
i;j

¼ 1

2Dx2
Yiþ1

2
;j

	
� Yi�1

2
;j



Piþ1;j

�
� Pi�1;j

�
;

oY
oy

oP
oy

� �
i;j

¼ 1

2Dy2
Yi;jþ1

2

	
� Yi;j�1

2



Pi;jþ1

�
� Pi;j�1

�
;

ð15Þ

where, consistent with use of interface K values, interface Y values are used.

For interior nodes, the discrete form of Eq. (2) is

ðPiþ1;j þ Pi�1;j þ Pi;jþ1 þ Pi;j�1 � 4Pi;jÞ þ
1

2
Yiþ1

2
;j

	
� Yi�1

2
;j



ðPiþ1;j � Pi�1;jÞ

þ 1

2
Yi;jþ1

2

	
� Yi;j�1

2



ðPi;jþ1 � Pi;j�1Þ ¼ 0: ð16Þ

At a no-flow boundary such as at y ¼ 0, the pressure equation is

ðPiþ1;j þ Pi�1;j þ 2Pi;jþ1 � 4Pi;jÞ þ
1

2
Yiþ1

2
;j

	
� Yi�1

2
;j



ðPiþ1;j � Pi�1;jÞ ¼ 0 ð17Þ

since Pi;jþ1 � Pi;j�1 ¼ 0. A compact discrete representation of the Y -based pressure equation, Eq. (2), is

YP ¼ 0; ð18Þ

where Y is a banded M �M log-permeability matrix.

3.5. Y -Based Monte Carlo simulation

It is common practice to use K-based MCS to validate Y -based SME approaches. One reason for this is

that the numerical tools for solving the governing deterministic, single-realization, equations have been

traditionally developed in terms of the permeability, K. Perturbation-based SME formulations, on the

other hand, have traditionally used a pressure, or head, equation written in terms of log-permeability, Y .
In MCS, we deal with individual realizations of the permeability field. In each realization, the perme-

ability is represented as a discrete and discontinuous variable. The severity and nature of the discontinuities

depend on the variance level and properties of the correlation structure. While Eqs. (1) and (2) are identical
if K is a continuous variable, the results obtained from discrete forms that correspond to these two

equations can be sensitive to the properties of the permeability field and the details of the discretization.

The simple discretization scheme employed to arrive at Eq. (18) leads to computational difficulties when

applied to discontinuous permeability distributions. The matrix Y in Eq. (18) may not be diagonally

dominant due to the way in which the terms involving the first derivative, such as Yiþ1
2
;j � Yi�1

2
;j, are ap-

proximated. This problem is especially severe when the permeability variability is high and the correlation

scales are small. Thus, use of the Y -based Eq. (18) for Monte Carlo simulation is not practical. This is why

Monte Carlo simulations are usually performed using the K-based Eq. (7). To remove this discrepancy, one
can apply a flux-continuous discretization scheme to the Y -based equations so that they are completely

consistent with K-based MCS. That way, one retains all the benefits of a numerical Y -based SME for-

mulation. The details of such an approach will be the subject of a subsequent paper.

3.6. Y -Based stochastic moment equations

Eq. (18) is the discrete form of Eq. (2). We use Eq. (18) as the starting point for developing a discrete form

of the Y -based stochastic moment equations. Decomposing Y into a mean, hY i, and fluctuation, Y 0, substi-

tuting in Eq. (18), and averaging, we obtain a compact representation of the discrete mean-pressure equation
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hYihPi þ hY0P0i ¼ 0: ð19Þ

Subtracting Eq. (19) from Eq. (18) yields the perturbation equation

hYiP0 þ Y0hPi þ Y0P0 � hY0P0i ¼ 0; ð20Þ
where hYi and hY0i are matrices representing the discretization of the mean and perturbation of log-per-

meability, respectively; hPi and P0 are vectors of the mean and perturbation of pressure. To obtain the

equation for CYP , we multiply Eq. (20) by Y 0 at a different location and take expectation, which gives

hYiCYP þ CYYhPi þ hY 0Y0P0i ¼ 0; ð21Þ
where CYP ¼ hY 0P0i is the cross-covariance vector of log-permeability and pressure. CYY is the matrix

representing the derivative of the covariance of Y 0 with every point in the domain Y0. Similarly, we multiply
Eq. (20) by P 0 at a different location and average to obtain

hYiCPP þ CPYhPi þ hP 0Y0P0i ¼ 0; ð22Þ

where CPY is the matrix of the discretized derivative of the cross-covariance of P and Y .
Eqs. (21) and (22) are the discrete moment equations of pressure that correspond to the following

equations in (continuous) differential form:

o2CP ðx; vÞ
ox2i

þ oCP ðx; vÞ
oxi

ohY ðxÞi
oxi

þ oCPY ðx; vÞ
oxi

ohP ðxÞi
oxi

þ P 0ðvÞ oY
0ðxÞ
oxi

oP 0ðxÞ
oxi

� �
¼ 0 ð23Þ

and

o2CYP ðx; vÞ
ov2

i
þ oCYP ðx; vÞ

ovi

ohY ðvÞi
ovi

þ oCYY ðx; vÞ
ovi

ohPðvÞi
ovi

þ Y 0ðxÞ oY
0ðvÞ
ovi

oP 0ðvÞ
ovi

� �
¼ 0; ð24Þ

where CYP ðx; vÞ ¼ hY 0ðxÞP 0ðvÞi and CPP ðx; vÞ ¼ hP 0ðxÞP 0ðvÞi. Here, x represents any spatial location in the

two-dimensional domain, and v is a reference point. In the above equations, summation over the number of
dimensions is implied. Comparison of Eqs. (21) and (22) with (23) and (24) indicates that hY 0Y0P0i and

hP 0Y0P0i are the discrete forms of

hY 0ðxÞ oY
0ðvÞ
ovi

oP 0ðvÞ
ovi

i and hP 0ðvÞ oY
0ðxÞ
oxi

oP 0ðxÞ
oxi

i;

respectively.

We must first close Eqs. (23) and (24) before we can attempt to solve them. One particular closure

approximation commonly used in low-order stochastic analysis is to discard the higher-order moments. For
example, in the equations governing the second moments, we drop terms that depend on the third mo-

ments, leading to

o2CP ðx; vÞ
ox2i

þ oCP ðx; vÞ
oxi

ohY ðxÞi
oxi

þ oCPY ðx; vÞ
oxi

ohP ðxÞi
oxi

¼ 0 ð25Þ

and

o2CYP ðx; vÞ
ov2

i
þ oCYP ðx; vÞ

ovi

ohY ðvÞi
ovi

þ oCYY ðx; vÞ
ovi

ohPðvÞi
ovi

¼ 0: ð26Þ

Eqs. (25) and (26) are identical to the first-order (in terms of r2
lnK) equations governing the second pressure

moments obtained via a formal perturbation expansion (Eqs. (8) and (9) of [29]). The compact discrete

forms that correspond to these equations are
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hYiCPP þ CPYhPi ¼ 0;

hYiCYP þ CYYhPi ¼ 0:
ð27Þ

Comparison of Eqs. (23) and (24) with (25) and (26) shows that the missing terms are two triplets. These

triplets, which are to infinite-order in rlnK , can be computed with the help of MCS results. That way, we

quantify the exact difference between low-order SME approximations and the full solution.

4. Results and discussion

4.1. K-Based MCS vs. K-based SME

The full discrete SME equations, Eqs. (10) and (12), help us to identify the terms that are dropped in order

to obtain LOSME approximations. Using our detailed MCS results, we compute all the terms that appear in

Eqs. (10) and (12). The ‘‘reconstruction procedure’’ to obtain the full discrete K-based SME solution is:

1. Using the MCS results, compute hK0P0i.
2. Solve Eq. (10) for the mean pressure, hPi, which should be identical to the mean pressure obtained

from MCS.

3. Calculate hK 0K0i from the actual ensemble of the generated realizations.
4. Compute hK 0K0P0i from MCS, and solve the second equation of (12) for CKP .

5. Calculate hP 0K0P0i from MCS, and solve the first moment equation in (12) for the pressure covariance,

CPP . This CPP is identical to that computed directly with MCS.

Note that step 3 is used to ensure complete consistency between the K-based SME formulation and MCS in

terms of the statistics of the log-permeability field. With this procedure, we isolate the contributions of each

term that appears in Eqs. (10) and (12). As a result, we should be able to achieve an exact match between

MCS and the full discrete form of the K-based SME for any input variance or correlation scale. This gives

us a unique opportunity to examine the effects of truncating each of these terms and determine the validity
range of the approximate SME approach.

The approximate low-order, K-based SME approach is equivalent to the following steps: (1) solve for the

mean pressure using Eq. (10) without the hK0P0i term, then (2) solve Eq. (13), (3) compute the correction

term hK0P0i from the solution of Eq. (13), and (4) apply it to the mean-pressure approximation. We refer to

this procedure as the ‘‘truncated’’ K-based SME solution, or simply the SME solution. The K-based SME

solution procedure just described is analogous to the first-order Adomian decomposition approach, in

which, as summarized by Zhang [30], the statistical moments of pressure are derived directly from Eq. (1),

i.e., in K-based form, instead of Eq. (2). We refer to adding the contributions of the triplet moments
hK 0K0P0i and hP 0K0P0i to the truncated SME solution as the ‘‘reconstructed solution’’. If the discretization

and numerical implementation of SME and MCS are consistent, the reconstructed solution should re-

produce the direct results obtained from MCS.

We resort to a graphical representation of the results, and we use the following labels in the figures.

‘‘MC’’ refers to the full MCS solution; ‘‘SME’’ stands for the ‘‘truncated’’ SME solution;

‘‘SMEþ hP 0K0P0i’’ describes the effect of dropping CKKP ; ‘‘SME þ hK 0K0P0i’’ considers the effect of drop-

ping CPKP . Finally, SMEþ hP 0K0P0i þ hK 0K0P0i refers to the fully reconstructed solution.

Our computations, which span a wide parameter range, indicate that high-order terms have a negligible
effect on the mean pressure, and that low-order SME solutions are very accurate. This is an important finding

because first-order SME approximations of the mean is no more expensive than solving the flow equation for

one realization in an MCS procedure. The fact that the low-order SME mean is both robust and compu-

tationally affordable suggests that such computation should be performed as part of normal practice.
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Figs. 5–7 show the pressure variance along the line y ¼ L=2. Each of these figures is for a particular value

of r2
Y . Namely, r2

Y of 0.5, 1, and 3. In each figure, we show solution for kY =L of 0.1 and 0.05. The MCS

solutions, which we take as a reference, in Figs. 5–7 indicate that the overall level of pressure variance in the

domain increases with r2
Y . The curves are nearly symmetric, and the maximum value occurs near the center

of the domain. Because Dirichlet boundary conditions are used, the variance at both ends is zero.

Figs. 5–7 also indicate that compared to MCS, the SME solutions overestimate the level of pressure

variance everywhere in the domain. Moreover, these figures indicate clearly that for a given kY =L, the
discrepancy between MCS and SME increases with r2

Y . In Fig. 5, which is for r2
Y ¼ 0:5, the maximum

difference between SME and MCS is less than 20%. Thus, for this case, K-based SME appears to be a

reasonable approximation. However, when the variance is as high as three as shown in Fig. 7, the K-based
SME predictions overestimate the pressure variance by as much as 100%.

Figs. 5–7 show that the ‘‘reconstructed solution’’ is indeed equivalent to the MCS solution, which is a

reassuring fact. From Figs. 5–7, we also see that the effect of the triplet terms increases as r2
Y increases. In

the uniform mean flow case, which is the subject of this paper, we find that the two triplet moments,

namely, CPKP and CKKP appear to carry opposite signs. However, for a given r2
Y , CKKP is consistently much

Fig. 5. The effect of dropped terms on the pressure variance prediction along the x direction at y ¼ L=2, using K-based SME for

uniform mean flow with r2
ln k ¼ :5. (a) kY =L ¼ 0:1 and (b) kY =L ¼ 0:05.

Fig. 6. The effect of dropped terms on pressure variance prediction along the x direction at y ¼ L=2, using K-based SME for uniform

mean flow with r2
ln k ¼ 1. (a) kY =L ¼ 0:1; (b) kY =L ¼ 0:05.
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larger than CPKP . These results highlight the importance of the triplet moment terms, especially CKKP , when

r2
Y > 1. Thus, an effort directed at improving K-based SME predictions should probably focus on ac-

counting for the influence of CKKP . Further examination of Figs. 5–7 indicates that for a given r2
Y , CPKP

appears to be more important when the integral scale of permeability is smaller. This is an interesting

observation that requires further analysis. Figs. 5–7 indicate clearly that the truncated K-based SME ap-

proach is inadequate for providing uncertainty estimates of flow-related quantities when r2
Y P 1.

4.2. K-Based MCS vs. Y -based SME

4.2.1. Discrepancy between K-based and Y -based equations
Before we present detailed comparisons of K-based MCS with Y -based SME, we discuss issues related to

the discrete forms of the equations.
In deriving the Y -based equation, Eq. (2), from Eq. (1), we implicitly assume that K is a continuous

variable. However, when a discrete representation of the permeability field is employed, as in MCS, the

permeability can be very discontinuous. In cases of spatially variable permeability, the expression

oK=Kox ¼ oY =ox is only valid at the infinitesimal scale. The way that oK=Kox and oY =ox are usually

discretized is the cause of the numerical discrepancy. To our knowledge, this problem has not been reported

in the literature. We illustrate this issue using the one-dimensional pressure equation as an example.

Interior nodes. The K-based one-dimensional pressure equation for an interior node, or gridblock, is

Kiþ1
2
Piþ1 þ Ki�1

2
Pi�1 � Kiþ1

2

	
þ Ki�1

2



Pi ¼ 0: ð28Þ

Rearranging the above equation yields

Kiþ1
2
� Ki�1

2

Kiþ1
2
þ Ki�1

2

½Piþ1 � Pi�1� þ Piþ1 þ Pi�1 � 2Pi ¼ 0; ð29Þ

and replacing Ki by eYi , we get

e
Y
iþ1

2 � e
Y
i�1

2

e
Y
iþ1

2 þ e
Y
i�1

2

½Piþ1 � Pi�1� þ Piþ1 þ Pi�1 � 2Pi ¼ 0: ð30Þ

Fig. 7. The effect of dropped terms on pressure variance prediction along the x direction at y ¼ L=2, using K-based SME for uniform

mean flow with r2
ln k ¼ 3. (a) kY =L ¼ 0:1; (b) kY =L ¼ 0:05.
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Multiplying the numerator and denominator of the first term by e
�Y

i�1
2 gives

e
Y
iþ1

2
�Y

i�1
2 � 1

e
Y
iþ1

2
�Y

i�1
2 þ 1

½Piþ1 � Pi�1� þ Piþ1 þ Pi�1 � 2Pi ¼ 0: ð31Þ

When the difference, Yiþ1
2
� Yi�1

2
, is sufficiently small, the expression becomes

e
Y
iþ1

2
�Y

i�1
2 � 1 � Yiþ1

2
� Yi�1

2
;

e
Y
iþ1

2
�Y

i�1
2 þ 1 � 2;

ð32Þ

and the K-based equation approaches the Y -based pressure equation. So that

Yiþ1
2

	
� Yi�1

2


 ðPiþ1 � Pi�1Þ
2

þ Piþ1 þ Pi�1 � 2Pi � 0 ð33Þ

or

DY
Dx

DP
Dx

þ D2P
Dx2

� 0: ð34Þ

This derivation reveals a source of difficulty in comparing K-based MCS and Y -based SME solutions. For

the numerical comparisons to be strictly valid, the following condition must be satisfied: jYiþ1
2
� Yi�1

2
j � 1.

We refer to this difference term as the model error, d, which appears only when we compare K-based MC

with Y -based SME. The model error, d, is given by

d ¼ ðY -basedÞ � ðK-basedÞ ¼ Yiþ1
2

	
� Yi�1

2


 ðPiþ1 � Pi�1Þ
2

� e
Y
iþ1

2
�Y

i�1
2 � 1

e
Y
iþ1

2
�Y

i�1
2 þ 1

½Piþ1 � Pi�1�

¼ ðPiþ1 � Pi�1Þ
2

Yiþ1
2

2
4 � Yi�1

2
�
2 e

Y
iþ1

2
�Y

i�1
2 � 1

h i
e
Y
iþ1

2
�Y

i�1
2 þ 1

3
5

¼ ðPiþ1 � Pi�1Þ
2

½Yiþ1
2
� Yi�1

2
�½eYiþ1

2
�Y

i�1
2 þ 1� � 2½eYiþ1

2
�Y

i�1
2 � 1�

e
Y
iþ1

2
�Y

i�1
2 þ 1

2
4

3
5

¼ ðPiþ1 � Pi�1Þ
2

1
6
ðYiþ1

2
� Yi�1

2
Þ3 þO½ðYiþ1

2
� Yi�1

2
Þ4�

e
Y
iþ1

2
�Y

i�1
2 þ 1

" #
: ð35Þ

This is the discretization error between the two methods for the simple one-dimensional pressure problem.

As the equation indicates, the model error decreases as jYiþ1
2
� Yi�1

2
j approaches zero.

For the two-dimensional case, the discrepancy between the discrete forms of the K-based and Y -based
equations in the interior of the domain is

d ¼ ðK-basedÞ � ðY -basedÞ

¼ Fiþ1
2
;j

	
� 1


Piþ1;j � 1

	
� Fi�1

2
;j



Pi�1;j þ Fi;jþ1

2

	
� 1


Pi;jþ1 � 1

	
� Fi;j�1

2



Pi;j�1

� Yiþ1
2
;j

	
� Yiþ1

2
;j


 ðPiþ1;j � Pi�1;jÞ
2

� Yi;jþ1
2

	
� Yi;jþ1

2


 ðPi;jþ1 � Pi;j�1Þ
2

; ð36Þ
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where

Fiþ1
2
;j ¼

4Kiþ1
2
;j

Kiþ1
2
;j þ Ki�1

2
;j þ Ki;jþ1

2
þ Ki;j�1

2

	 
 ; Fi;jþ1
2
;j ¼

4Ki;jþ1
2

Kiþ1
2
;j þ Ki�1

2
;j þ Ki;jþ1

2
þ Ki;j�1

2

	 
 :
Boundary cells. The second source of the discrepancy is due to the implementation of the boundary

conditions. At the corners, the discretization is equivalent to setting the two terms (oY =oy) (oP=oy) and
(oY =ox) (oP=ox) to zero. That is, at the corners the equation reduces to

o2P
ox2

�
þ o2P

oy2

�
i;j

¼ 0; ð37Þ

and for non-corner boundary nodes, we have

o2P
ox2

�
þ o2P

oy2

�
i;j

þ oY
ox

oP
ox

� �
i;j

¼ 0 or
o2P
ox2

�
þ o2P

oy2

�
i;j

þ oY
oy

oP
oy

� �
i;j

¼ 0: ð38Þ

Discretization of the K-based equation, on the other hand, is based on flux continuity at gridblock in-

terfaces. As a result, the discrete equation accounts for the presence of variable permeability values. In-

spection of Eqs. (6) and (17) reveals the differences more clearly. In the continuous case, the K-based Eq. (1)

and Y -based Eq. (2) are equivalent. However, the discrete forms corresponding to Eqs. (1) and (2) are not
identical.

4.2.2. Comparison between K-based MCS and Y -based SME
We analyze the Y -based SME formulation, again with the help of our extensive K-based MCS results.

We follow the same procedure outlined previously except that we work with Eqs. (19), (21) and (22).

Explicitly, the ‘‘reconstruction procedure’’ for the Y -based SME approach is:

1. Using the MCS results, compute hY0P0i.
2. Solve Eq. (19) for the mean pressure, hPi, which should be identical to the mean pressure obtained

from MCS.

3. Calculate hY 0Y0i from the ensemble of generated realizations.

4. Compute hY 0Y0P0i from MCS, and solve Eq. (21) for CYP .
5. Calculate hP 0Y0P0i from MCS, and solve Eq. (22) for CPP .

We use labels similar to those used in Figs. 5–7, but with Y replacing K throughout. The new label

‘‘MERR’’ stands for ‘‘model error’’, which is computed using Eq. (36).

As reported for the K-based SME method, Y -based SME predictions of mean pressure are in excellent

agreement with MCS even for domains with high input permeability variance and significant correlation

lengths. We add here that the robustness of the mean pressure obtained from low-order SME solutions is

observed for more complex flow settings (e.g. converging/diverging flow around wells) than the simple case

of uniform mean flow studied here.
Figs. 8–11 show the distribution of pressure variance along the x direction at y ¼ L=2 in the case of

uniform mean flow. Figs. 8 and 9 show the results for different correlation lengths when r2
Y ¼ 1. Figs. 10

and 11 are similar, but with r2
Y ¼ 3. The dimensionless correlation scale, kY =L, in these figures ranges from

0.1 to 0.5. Examination of the MCS results, which we take as reference, shown in Figs. 8–11 indicates that

for a particular correlation length, the variance of pressure throughout the domain increases with r2
Y . The

variance of the response variable, pressure, is a measure of the uncertainty associated with predictions of

the pressure distribution in the area of interest. These results imply that as the input variance, r2
Y , increases,

the level of uncertainty in the obtained response, pressure in this case, increases.
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Note that the maximum pressure variance is significantly smaller than the variance level of log-per-

meability. This attenuation of the statistical moments of the dependent variable compared to the input

variance is an important characteristic of the flow problem [16,24], which deserves detailed analysis
for heterogeneity models and flow settings of practical interest [32]. Examination of the MCS solutions of

Fig. 8 indicates that for a domain of given size, the overall level of pressure variance increases significantly

as the correlation length increases from 0.1 to 0.2. A similar behavior is observed for the r2
Y ¼ 3 case of

Fig. 10. This strong sensitivity of the second moment predictions to the correlation scale in this range has

also been observed for radial flow in a bounded heterogeneous aquifer [25]. Increasing the correlation

scale further, see Fig. 9, does not appear to change the overall response significantly. Similar behavior is

also observed when r2
Y ¼ 3 as shown in Figs. 10 and 11.

The results in Fig. 8(a), where r2
Y ¼ 1 and kY =L ¼ 0:1, suggest that predictions of pressure variance

obtained from the ‘‘truncated’’ Y -based SME solution are in close agreement with those predicted by

Monte Carlo simulation. This result is consistent with the large body of published work in subsurface

hydrology. Recall that our ‘‘truncated’’ Y -based SME approach is quite similar to the approximate moment

analysis of Zhang [29]. The only difference is that when we compute the second moments, we use a mean

Fig. 9. The effect of dropped terms on pressure variance prediction along the x direction at y ¼ L=2, using Y -based SME for uniform

mean flow with r2
ln k ¼ 1. (a) kY =L ¼ 0:4; (b) kY =L ¼ 0:5.

Fig. 8. The effect of dropped terms on pressure variance prediction along the x direction at y ¼ L=2, using Y -based SME for uniform

mean flow with r2
ln k ¼ 1. (a) kY =L ¼ 0:1; (b) kY =L ¼ 0:2.
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pressure that is ‘‘corrected’’ by the doublet term hY0P0i (see Eq. (19)). Zhang [29] used the first-order mean

pressure in the second moment equations of pressure. For consistency, we verified that our code reproduces

the solutions obtained from the SME analysis of zhang [29] when we use the mean pressure without the
higher-order correction.

Fig. 8 also indicates that the discrepancy between MCS and SME increases slightly as the correlation

scale increases. For this case, where r2
Y ¼ 1, as the correlation length increases from 0.1 to 0.2, the maxi-

mum relative error in the SME predictions, with respect to the MCS solution, increases from 5% to 12%.

For large correlation scales, see Fig. 9, the discrepancy between SME and MCS remains below 15%. This

apparent increase in the difference between MCS and SME with correlation scale may be explained as

follows. For a given domain size and r2
Y , as the correlation length increases, the spatial arrangement of

permeability becomes more channel like, and the local flow becomes more non-uniform. This results in
increased variability of the response variable, pressure and velocity for example. Under these conditions

one expects the quality of an approximate perturbation-based SME solution to decrease somewhat.

Our experience from extensive comparisons between SME and MCS indicates that the SME solutions of

first and second moments of pressure are robust for systems with r2
Y 6 1. Thus, in this parameter space, the

numerical Y -based SME approach, in which higher-order terms are neglected, especially triplets, provides

Fig. 10. The effect of dropped terms on pressure variance prediction along the x direction at y ¼ L=2, using Y -based SME for uniform

mean flow with r2
ln k ¼ 3. (a) kY =L ¼ 0:1; (b) kY =L ¼ 0:2.

Fig. 11. The effect of dropped terms on pressure variance prediction along the x direction at y ¼ L=2, using Y -based SME for uniform

mean flow with r2
ln k ¼ 3. (a) kY =L ¼ 0:4; (b) kY =L ¼ 0:5.
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an elegant, yet powerful computational tool for assessment of prediction uncertainty. The discrepancy

between predictions of the pressure�s second moment obtained from SME and those fromMCS increases as

the variance of input log-permeability, r2
Y , exceeds one. For all the cases we studied, we find that compared

to MCS, the first-order SME method overpredicts the magnitude of the pressure variance throughout the

domain. This is an important observation that may prove quite useful in practice. The maximum error in

the SME predictions relative to MCS when r2
Y ¼ 3 (see Figs. 10 and 11) is 17%, 38%, 39%, and 33% for

kY =L ¼ 0:1, 0.2, 0.4, and 0.5, respectively. The evidence is clear that, overall, the quality of the Y -based
SME predictions deteriorates with permeability variance and correlation length. However, given that SME
formulations are usually based on truncated expansions in terms of a small parameter, that parameter being

r2
Y , these results are very encouraging.

We now analyze the triplet terms. We begin with cases where kY =LP 0:2. Figs. 8–11 show clearly that

when kY =LP 0:2, the effect of CYYP is significantly larger than CPYP . In fact, the effect of CPYP is negligible for

kY =L ¼ 0:2 (see Figs. 8(b) and 10(b)). From Figs. 9 and 11, in which kY =L ¼ 0:4 and 0.5, it is clear that the

two triplet moment terms CPYP and CYYP have the same sign. These ‘‘corrections’’ combine to reduce the

pressure variance levels predicted by the SME solutions, thus bringing them closer to the MCS results.

Further study of Figs. 8–11 indicates that the triplet terms are more important in domains with larger
variance. Detailed examination of the results indicates that the relative importance of the triplet terms in

the Y -based formulation is much smaller than those in the K-based formulation. Specifically, while the CKKP

dominates the behavior of the second moment of pressure as r2
Y increases, CYYP does not.

Note, however, that in each of the plots of Figs. 8–11 the reconstructed solution, SMEþ hP 0Y0P0i þ
hY 0Y0P0i, does not reproduce the results from MCS. Recall that we did not encounter this problem when we

compared K-based MCS with K-based SME. This discrepancy occurs when comparing Y -based SME with

K-based MCS. As discussed in Section 4.2.1, we attribute the shortfall to differences in the treatment of the

discrete forms of the governing equations, and we refer to it with the label ‘‘MERR’’ for model error.
The model error is an important component of the difference between SME and MCS solutions in

Figs. 8–11. In fact, when the correlation length is small, the model error is dominant making it quite

difficult to make any specific conclusions about the various terms in the equations. The presence of this

‘‘model error’’ complicates the analysis. This is especially the case here because we are interested in

quantifying the impact of the various components that comprise the Y -based SME mathematical statement.

From Figs. 8 and 9, which are for r2
Y ¼ 1, we see that the model error decreases as the correlation scale of

log-permeability increases (i.e., permeability variability gets smoother locally). The same observation holds

for Figs. 10 and 11, which are for r2
Y of 3. Recall that we attribute the difference to the discontinuous nature

of the discrete representation of the permeability field in a particular realization, and the manner in which

the Y -based and K-based equations are approximated. As the correlation scale increases, one expects that,

on average, the permeability values between adjacent gridblocks become more similar. Thus, the quality of

finite-difference approximations like Yiþ1
2
;j � Yi�1

2
;j improves, and the model error decreases. Of course, in the

limit of infinite correlation scale, the permeability is continuous and the discretizations of Y -based and

K-based pressure equations become identical.

Consider Figs. 7(a) and 10(a), which are for the case r2
Y ¼ 3 and kY =L ¼ 0:1. While the errors of the

K-based SME predictions of Fig. 7(a) render the method completely inadequate, the Y -based SME
results of Fig. 10(a) provide a reasonable approximation with an error, measured relative to MCS, that

does not exceed 17%. Our computational experience indicates that the Y -based formulation yields much

better approximations of the pressure variance than a K-based approach. Note that both formulations

yield accurate predictions of the mean pressure. Detailed analysis of the statistical moment behavior in

the parameter space described in Table 1 provides compelling evidence that a Y -based SME formu-

lation is superior to a K-based SME approach. This is particularly true when the focus is not only

on computing the mean response, but also on quantifying the uncertainty associated with the flow

predictions.
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The superiority of the Y -based formulation is largely due to the fact that for systems with large variance,

the contribution of CKKP to the pressure variance is quite large while that of CYYP is much smaller. As

mentioned earlier, the (truncated) K-based moment equations are analogous to the (continuous) first-order

moment equations derived with the Adomian decomposition approach. Zhang [30] shows that these

truncated K-based equations can be formally derived using a perturbation expansion in terms of rK=hKi.
On the other hand, the first-order Y -based SME equations are obtained from a perturbation expansion

where the small parameter is rY . Thus, in a perturbation expansion, the third moment hK 0K0P0i appears as a
term of order ðrK=hKiÞ3, while the third moment hY 0Y0P0i is of order r3

Y . When K is log-normally dis-
tributed, the following relation holds:

r2
Y ¼ ln 1

"
þ rK

hKi

� �2
#
: ð39Þ

For small rY (e.g., 6 0.4), rK=hKi � rY we may expect the two perturbation-based approaches to work

equally well. For large rY , we have rK=hKi � rY , for rY ¼ 1:0; rK=hKi ¼ 1:31, for rY ¼ 1:73;
rK=hKi ¼ 4:37, for rY ¼ 2:0; rK=hKi ¼ 7:32. It is thus seen that the parameter rY is still relatively small

when rK=hKi is already quite large. This may help explain the superior performance of a Y -based per-

turbation-based formulation over a K-based one when both are truncated at low-order [30].

5. Summary and conclusions

There is enormous interest in quantifying the uncertainty associated with predictions of flow and
transport in porous media due to incomplete knowledge of the formation properties. The SME method is a

direct approach for making predictions and providing a measure of the predictive reliability of these

predictions. The recent developments toward a more general numerical solution framework for approxi-

mate SME approaches are very encouraging. Natural formations of interest often exhibit high levels of

permeability variability and large spatial correlation scales. This class of porous media is of special interest

here because of its importance in underground resources, such as oil and water reserves. Several investi-

gators have indicated that approximate SME methods may indeed be applicable for such systems. This

parameter space is significantly larger than what is expected based on theoretical considerations. The
central question of the paper is the validity range of perturbation-based, low-order, SME methods for flow

in heterogeneous porous media. In particular, the statistical moments of pressure for incompressible flow in

two dimensions were the focus of this study.

We mapped out the behavior in the parameter space of interest, and we analyzed the character and mag-

nitude of the errors that contribute to the discrepancy between truncated (low-order) SME solutions and

MCS. All the MCS results reported here employ 9000 high-resolution realizations. The variance of log-per-

meability, r2
Y , ranged from 0.5 to 3.0 and correlation length (normalized by domain length) from 0.05 to 0.5.

The errors aremainly due to terms that are usually dropped, or truncated, in the process of the developing low-
order approximations. However, we also find that details of the numerical schemes employed are important.

We conclude with a list of the important findings of this study:

1. First-order estimates of the first moment of pressure are very robust. High-order corrections to the

first moment are small even for systems with large log-permeability variance and long correlation

scales (e.g. r2
Y ¼ 3 and kY =L ¼ 0.5). Both the Y -based and K-based approximate SME formulations

give reliable estimates of the mean-pressure response.

2. Thousands of realizations are required to stabilize the second moments of pressure. Consistent with

previous investigations of other flow-related quantities, we find that the adequate size of the ensemble
tends to increase with both r2

Y and kY .
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3. For the cases we studied here, we find that compared to MCS, the truncated Y -based SME method

overpredicts the magnitude of the pressure variance. This is an important observation that may prove

quite useful in practice. The discrepancy increases with the level of permeability variability and cor-

relation length. The mismatch between MCS and SME is largely due to two triplet terms, which are
mixed moments of pressure and permeability or log-permeability.

4. When the correlation scale is larger than 0.1 relative to the size of the domain, the contribution of CYYP

is larger than CPYP . Similar, but more pronounced behaviors are observed for the K-based approach.

5. A Y -based SME formulation is superior to a K-based approach for predictions of the second moment

of pressure. While the Y -based SME method produces reasonable approximations of second moments

even for r2
Y ¼ 3, the truncated terms in K-based SME approximations, CKKP in particular, are too im-

portant rendering the low-order K-based approach inadequate.

6. When comparing Y -based SME to K-based MCS, it is important to account for the differences in the
details of the discretization methods, which we refer to as ‘‘model error’’. It is only after considering

the model error that the reconstructed Y -based moment equation solution matches the Monte Carlo

results exactly.
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